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Analysis of the Noise in Data from the Mt. Meron Array

David H. Chambers, Eric Breitfeller

Introduction
This memo describes an analysis of the noise in data obtained from the Mt. Meron 

seismic array in northern Israel. The overall objective is to development a method for removing 
noise from extraneous sources in the environment, increasing the sensitivity to seismic signals 
from far events. For this initial work, we concentrated on understanding the propagation 
characteristics of the noise in the frequency band from 0.1 – 8 Hz, and testing a model-based 
method for removing narrow band (single frequency) noise.

The Mt. Meron seismic array is an array of 16 sensors covering a geographical area of 
around 6 square km. and an elevation range of 200 m in northern Israel. Figure 1 shows a plan 
view of the array and a perspective view obtained from GoogleEarth. The array elements are 
arranged roughly on a tilted plane whose elevation varies from 701 meters at element MMC2 to 
893 meters at element MMC6. Each sensor measures the vertical displacement at a sampling rate 
of 40 Hz (see ref. 1 for more detail). Two data sets consisting of 9 and 10 contiguous days were 
analyzed. The first set was measurements taken Jan 1-9, 2008 (9 days) while the second set was 
taken Mar 20-29, 2008 (10 days). Both broadband and narrowband (single frequency) noise 
sources were observed. The narrowband noise sources presumably come from rotating or 
reciprocating machinery close to the array. The broadband noise sources may be either man-
made (e.g. plant noise), or natural sources (ocean generated wave noise).

Two types of analysis were performed on the data. The goal of the first type of analysis 
was to characterize the noise and seismic environment. Spectrograms and cross-spectra were 
calculated to identify noise components and determine wave speed and direction. The second 
type of analysis built and applied a time-domain beamforming algorithm for removing 
narrowband noise components. Unlike more conventional beamforming algorithms, this new 
algorithm attempts to track the source location and frequency of the noise using a model of the 
noise source. The algorithm is a generalization of the classical Kalman filter that can 
accommodate nonlinear signal models and non-Gaussian statistics. Once the algorithm 
determines the best fit to the model, it uses the model to predict the noise signal and remove it 
from the data.



Figure 1



Layout (top) and GoogleEarth perspective view (bottome) of Mt. Meron Array.

Noise Characterization
The goal of the first type of analysis performed on the Mt. Meron data was to identify the 

noise components and determine the speed and direction of the seismic waves in that 
environment. Spectrograms of the data from each array element were calculated for both data 
sets.  Figure 3 shows typical spectrograms from the Jan2008 and Mar2008 data sets. These were 
calculated using Welch’s method to estimate the power spectrum over 10 minute blocks of data 
(nonoverlapping). There are several components to the background noise visible in the 
spectrograms. One component is a broadband background noise that varies on a diurnal cycle. 
This is characteristic of traffic and industrial noise associated with the local econony. In fact the 
third and tenth days in the March data and the fifth day in the January data shows a noticeable 
drop in background noise associated with observing the Sabbath. The second most noticeable 
component is a low frequency (< 1 Hz) band of noise that is persistent in the Jan2008 data set but 
arises only on the sixth day in the Mar2008 data. This noise overlaps the frequency range where 
long-range seismic signals are expected, limiting the overall performance of the array. The third 
noise component is a series of narrowband sources likely associated with rotating machinery 
such as pumps. Some of these frequency lines are intermittent while others show frequency 
wandering. These lines occur in the higher frequency range where short-range seismic signals 
might be observed. They could be removed using a model-based processing scheme designed to 
track the frequency of each source and estimate its location. This is described in the second 
section of this report. An examination of the variation of the noise with sensor location (see 
appendix) shows that most of the noise components vary little across the array. An exception is 
the intermittent high frequency (8-9 Hz) noise, which is noticeably greater for sensors MMC1 
and MMC7 close to the community of Sasa. 

In order to apply beamforming algorithms for noise removal, we need to know the wave 
speed for each range of frequencies. Our approach was to estimate the phase difference betweeen 
each pair of elements from the cross-spectrum (Fourier transform of the cross-covariance 
matrix). The cross-spectrum was estimated using a variation of Welch’s method for power 
spectra. Products of the Fourier transformed signals from each sensor were averaged over 20 
minute time blocks, giving cross-spectrum estimates at 20 minute intervals over each data set. 
Mathematically, the cross-spectrum between sensors m and n is , 
where is the Fourier transform of the signal from sensor m and is the expectation. 
Each cross-spectrum covered the frequency range of 0 to 8 Hz at a resolution of around 0.02 Hz. 
This was used to analyze the noise characteristics in the frequency band above 1 Hz. For 
frequencies less than 1 Hz, a low range version of the cross-spectrum was calculated for 0-1 Hz 
with a resolution of about 0.002 Hz for each 20 minute block. Formally, the cross-spectrum for a 
16 element array has 256 components (16 x 16). However, symmetry reduces these to 136 
independent components, 16 of which are the ordinary power spectra for each element.



Figure 2
Spectrogram of array element MMA3 for March 20-29, 2008 (top) and January 1-9, 2008 

(bottom).





The components of the cross-spectrum can be considered spatial samples of a continuous 
cross-spectral density function, , where , and 

. A plot of the spatial separations (Fig. 3) shows that the minimum correlation 
distance that can be calculated is around 500 m, and the maximum is nearly 2500 m. The 
directional distribution is fairly uniform, detecting correlations in any direction. This is important 
in estimating the direction of propagation of noise components.

Figure 3
Spatially sampling of the cross-spectral density. The horizontal axis is and the vertical axis 

is .

Suppose the noise consisted of a random superposition of plane waves at different 
frequences . Then the phase of the cross-spectrum Cmn( )  would be 

, where ,mn is a 
constant,  and k is the propagation direction of the wave component at frequency . For a fixed 
frequency this forms a plane in the space of phase  versus x and y. To test this we reduced 
the number of cross-spectra in each data set by averaging across multiple days to produce a 
sequence of cross-spectra over a single day period. For the Jan2008 data this reduced the number 
of cross-spectra from 648 (one for each 20 minute period over 9 days) to 72. Each of the 72 
cross-spectra is an average of nine cross-spectra that are chosen at the same time in the diurnal 
cycle. This also reduces the effect of transients, leaving the persistent noise sources in each data 



set. These were further averaged to a single cross-spectrum for display purposes. Figure 4 shows 
the cross-spectrum phase for three different frequencies below 1 Hz and a least-squares plane fit
for each. The phases appear to be distributed on parallel planes, with most of the phases on the 
central plane. The upper and lower planes correspond to phases /2 from the central plane. In 
Fig. 4, the phases for the highest frequency (0.75 Hz) are less concentrated around planes than 
the lower frequencies. This is a general property of the higher frequencies, leading to greater 
uncertainty in the properties of the noise at higher frequencies. 

Figure 4
Cross-spectrum phase versus separation for three frequencies: 0.25 Hz (upper left), 0.5 Hz (upper 

right), and 0.75 Hz (bottom). These results are typical for both the Jan2008 and Mar2008 data 
sets.



From the coefficients of the least-squares planar fit, we can estimate the propagation 
direction of the noise component and the wave speed at each frequency. Figure 5 shows the wave 
speed and direction of propagation estimated from the phase of the overall mean cross-spectrum 
for each data set. Both wave speed and propagation direction vary smoothly and agree well 
between both data sets for the frequency range of 0.25 – 1.0 Hz. The wave speed ranges from 
2100 m/s near 0.65 Hz to around 7000 m/s near 0.25 Hz and 1.0 Hz. The direction of 
propagation is due east. This would be consistent with noise produced by waves on the 
Mediterranean shoreline. For frequencies be 0.25 Hz, the wave speed and direction estimates 
vary rapidly. In particular, the wave speed estimate shows sharp peaks with unphysical values 
well above 10,000 m/s. Two effects may contribute to inaccurate and rapidly varying estimates 
in this range. First, the wavelengths at these low frequencies are longer than the aperture of the 
array, making it harder to obtain accurate phase differences. Second, large apparent wave speeds 
would be expected if the wave direction has a substantial vertical component. In fact, waves 
propagating from directly below the array would have infinite apparent wave speeds since the 
wavefronts would be horizontal. Figure 6 shows the phase of the cross-spectrum at 0.2 Hz for the 
Jan2008 data set. The least-squares planar fit is nearly horizontal, showing little phase variation 
over the range of separations. Thus the assumption of a two-dimensional wave field for the noise 
components may be breaking down at frequencies below 0.25 Hz.

Figure 5
Estimated wave speeds (left) and propagation directions (right) derived from the phase of the 

mean cross-spectrum for each data set. 



Figure 6
Cross-spectrum phase versus separation at 0.2 Hz for the Jan2008 data set. Note the small 

variation of phase over the range of separations.

The wave speeds and propagation directions shown in Fig. 5 are averaged over the entire 
data sets. Figures 7 and 8 show these estimated for each cross-spectrum in the data over several 
days. For frequencies in the upper range (>0.3 Hz) the estimated wave speed and propagation 
direction is close to that for the overall average in Fig. 5. The wave speed varies smoothly in a 
range between 2100 m/s to around 7000 m/s, and the propagation direction is nearly due east. As 
noted before, there is considerable uncertainly in the estimates for frequencies less than 0.25 Hz 
due to long wavelengths and possible vertical propagation. The boundary between the higher 
frequency stable region and the lower frequency high-variability region seems to change over 
time. This could be caused by a change in the bandwidth of a vertically propagating noise 
component. It may be possible to characterize this with further work on more data.

So far we have concentrated on noise components with frequencies less than 1 Hz. For 
higher frequencies, the cross-spectrum approach begins to break down because the wavelenths 
are less than the 500 m minimum separation distance between sensors. The phase variation 
between neighboring sensors becomes large and could even be more than one full cycle. For 
higher frequencies, we concentrate on removing narrowband noise components that are 
associated with machinery.



Figure 7
Estimated wave speed (top) and propagation direction (bottom) obtained from the cross-

spectrum for the Jan2008 data set. Time sample interval is 20 minutes.



Figure 8
Estimated wave speed (top) and propagation direction (bottom) obtained from the cross-

spectrum for the Jan2008 data set. Time sample interval is 20 minutes.



Model-based Noise Identification and Removal
As noted before, one noise component seen in both the Jan2008 and Mar2008 data sets is 

narrow band tones most likely generated by machinery. The sources for this noise may be far 
from the array or within the footprint of the array itself. One approach for removing this type of 
noise, especially if the noise varies in frequency and amplitude, is to fit a mathematical model to 
the noise. Once the best fit is found, the model is used to subtract out the noise. The particular 
approach we used, the Unscented Kalman Filter (UKF),  is a member of the class of sequential 
Bayesian methods, which continuously updates a statistical model of the noise as each 
measurement is made. It is a generalization of the classical Kalman filter that can incorporate 
nonlinear models and non-Gaussian statistics. 

The UKF begins with a mathematical model of the narrow-band noise component. We 
assume that the noise can be described as a single frequency tone which may be slowly 
modulated in either amplitude or frequency (or both). Assuming two-dimensional geometry, the 
source tone is described by an amplitude, frequency, and source location (x and y coordinates). 
We start with the far-field representation of the field radiated from a point source at in 
two-dimensions:

where and A is the (complex) amplitude. For convenience 
choose a reference point (x0,y0) near the center of the array, then writing 

the field becomes

with B  the new complex amplitude proportional to the original amplitude A. Using the definition 
of R for computations can be numerically inaccurate. A better expression is

This has the advantage of maintaining accuracy even when the source point is far from the array. 
Finally, the field is sampled by each sensor in the array (location ) so we can write 

, and similarly for Rn and Rn. 
To complete the formulation of the model for the UKF we must transform the expression 

for the field into a state-space model that describes the evolution of the model in time. Since the 



model must describe a process that is inherently random, it takes the form of a system of first-
order ordinary differential equations with random forcing (Gauss-Markov). The dependent 
variables, or states, will include the fundamental quantities that describe a source of sinusoidal 
waves, namely the frequency f, amplitude A, and the source location (xs , ys). Though nominally 
constant, the model allows for slow time variations for these quantities. This requires adding 
another state variable, the total phase (t) whose time derivative is the frequency. The equations
for the evolution of the five states are then

where um(t) are white Gaussian noise. To complete the model, we must relate the states to the 
measurements. We use the expression for the field from a single point source derived above to 
write the following measurement equation:

where   and v(t) is white noise.The basic signal 
processing problem is to estimate the states at each time sample from the sampled measurements.
Besides the state variables, the other unknowns that serve as a type of adjustment for the 
processor are the covariances of the additive noise terms, both in the state equations and the 
measurement equation. 

As an introduction to the Unscented Kalman Filter (UKF) we will first describe the 
operation of the classical Kalman Filter (Fig.9). The Kalman filter is valid whenever the statistics 
are Gaussian and the model equations (both state and measurement) are linear in the states. This 
guarantees that probability distribution for the states remains Gaussian for all times and it is 
sufficient to estimate the state mean and covariance to describe all the statistical properties of the 
model. The Kalman filter is sequential estimator, i.e. given the means and covariances of the 
states at time t-1 (discrete) it allows one to calculate the means and covariances of the states at 
time t using the data y(t). It begins with the vector of state means xest(t-1|t-1) and covariance 
matrix Rest(t-1|t-1) at discrete time index t-1. Equations derived from the state space model are 
used to predict the state vector mean and covariance matrix at time index t. The measurement 
equation is then used to predict the measurement. The difference between the predicted 
measurement yest(t|t-1) and the data y(t) is the innovation e(t). This, along with the assumed 
covariances of the noise terms (Ruu and Rvv) in the state and measurement equations, are used to 
calculate the Kalman gain K(t). Finally, the Kalman gain is used to correct the predicted state 
vector mean and covariance matrix. This completes the cycle for a single time step. The process 
is repeated for subsequent time steps. To apply the Kalman filter to a set of data requires 
choosing initial values for both the state variables and their covariance. The filter is “tuned” by 



the choice of the noise covariance matrices Ruu and Rvv. Typically, the initial values are chosen 
from an initial assessment of the data or from physical arguments. The noise covariances are the 
primary “knob” for controlling the performance of the filiter. Often a preliminary analysis of the 
data provides guidance for the choice of measurement noise covariance Rvv. This leaves the state 
noise covariance Ruu as the primary model parameter that is adjusted to optimize the 
performance of the filter. 

Figure 9
Kalman filter algorithm for updating the state mean and covarainces.

The classical Kalman filter requires linear state and measurement equations and Gaussian 
statistics. Though the model equations for describing a slowly varying sinusoid are linear, the 
measurement equation is nonlinear. Consequently, even if the states are statistically Gaussian, 
the measurement is unlikely to be Gaussian. The UKF is designed to overcome these obstacles, 
allowing states and measurements to be statistically non-Gaussian within certain general 
limitations, and enabling nonlinear state and measurement equations. The key is a discrete 
representation of the probability density function (pdf) of the states and measurements that is 
designed to be exact for calculating means and covariances, but only approximate for higher 
order moments. The representation for a particular multivariate pdf  p(x) is given by a set of 
sigma points x  and corresponding weights W . These are also used to derive a sigma point 
representation for the pdf of , in which . The sigma points and weights are 



chosen so that combinations of them give the means and covariances for both x and y. 
Expressions for higher order moments in terms of the sigma points and weights are only 
approximate. The representation is restricted to unimodel distributions such as Gaussian, 
Rayleigh, and Poisson. For more details see the book by Candy [1]. For the particular state and 
measurement equations we use to model a modulated sine wave, the states are Gaussian random 
variables since the noise terms um(t) are white Gaussian noise. However, the measurements n(t) 
are non-Gaussian because they are related nonlinearly to the states. The UKF algorithm proceeds 
like the classical Kalman filter except the state variables and covariances are replaced by the 
sigma point values and weights, which are updated at each iteration. Whenever the actual state 
variables or covariances are required, they are calculated from the sigma points and weights. 

We first applied the UKF to simulated data using the Mt Meron array layout. To simplify 
the system, we set the source amplitude to unity and added white Gaussian noise at a set dB level 
to create the data. We can then eliminate the amplitude state variable A(t) and reduce the 
measurement equation to

We also let the wave speed c be a state variable, allowing the processor to estimate the best value 
from the data. The final set of state equations for the simulation were 

Figure 10 shows the array reference point (green dot) and the source location (red dot) for 
a particular simulation with source frequence of 0.5 Hz. The reference location is the numerical 
average of the array sensor coordinates. The data sampling rate was 40 Hz and the wave speed 
was 2300 m/s. To show how the UKF locks on to the source frequency and location we start the 
sinuoid 383 seconds after the beginning of the data set. Figure 11 shows a typical simulated 
sensor channel for a signal-to-noise ratio (SNR) of 10 dB. The performance of the UKF 
processor for this case is shown in Figure 12. During the time before 383 seconds where the 
input is white noise, all the states except the frequency remain near their initial values. The 
frequency rapidly drifts to zero during this period. After the sinusoidal signal begins, the 
frequency approaches the true value in around 100 seconds. The wave speed and source location 
states converge more slowly, taking nearly 20 minutes to approach the true values. Figure 13 
shows the time history of the square root of the estimated variance for each state. Before 383 
seconds, the UKF is reinitialized whenever the estimated variance exceeds a set threshold. This 
prevents the state values from wandering outside a physically meaningful range when no signal 
is present. 

The UKF was tested on simulated data for sources in a number of locations. The results 
for a source at position (1230, 2060) meters is shown in Fig. 15. We also delayed the start of the 
signal to 766 seconds after the beginning of the data record. The UKF position estimates 
converged to the correct positions in about 40 minutes. 



Though the UKF successfully converged using simulated data, it did not converge to a 
steady solution on real data in the frequency range from 2 to 8 Hz. Though there was insufficient 
time to do a thorough analysis, there are at least two possible reasons for the failure of the UKF 
to converge. One may be that the data may need preconditioning before applying the UKF in 
order to narrow the frequency range of interest. This may be accomplished by applying a 
bandpass filter around the noise frequency. Another reason may be that the waves in the 
frequency range of interest may be under-resolved, i.e. the sensors may not be close enough 
together to resolve the wave field for these frequencies. In that case there are multiple possible 
source locations and the UKF would not be able to decide between each possible solution. 

Figure 10
Sensor locations for Mt Meron array with reference location (green dot) 

and simulated source location (red dot).



Figure 11
Simulated data for a single sensor at an SNR of 10 dB. 

The sinusoidal signal begins at 383 sec.

Figure 12
Time history of the states when the signal is turned on 383 seconds after the beginning of the 

record. The red dots at time zero are the initial state values. The green reference lines are the true 
values for each state.



Figure 13
Time history of the residuals (innovations) for each state (blue) and  (red). For times before 

the signal is present (before 383 seconds) the UKF is re-initialized whenever the estimated 
variance exceeds a threshold. This keeps the states from wandering too far when there is not 

signal present.

Figure 14
Sensor locations for Mt Meron array with reference location (green dot) 

and simulated source location (red dot).



Figure 15
Time history of the states when the signal is turned on 766 seconds after the beginning of the 

record. The red dots at time zero are the initial state values. The green reference lines are the true 
values for each state.

Summary
We performed two types of initial analysis of the Mt Meron data for characterizing 

different noise components. In the first analysis, we estimated the local wave speed for 
frequencies less than 1.0 Hz by estimating the phase of the cross-spectrum for each data set. This 
showed wave speeds varying from 2100 m/s to around 7000 m/s. The noise in this band was
propagating eastward, consistent with sources along the Mediterranean coast. An attempt to 
estiamte speed and direction for noise above 1 Hz was not successful since the array spacing was 
too large to accurately resolve the phase differences between sensors.

In the second analysis we attempted to fit an unscented Kalman filter (UKF) to 
narrowband noise seen in the frequency band above 1 Hz. Testing of the narrowband noise 
model and UKF on simulated data using sources near the array showed promise. However, we 
did not obtain convergence of the filter on actual data. Two possible reasons are inadequate 



spatial sampling (as mentioned previously), or lack of data preconditioning. This could be 
resolved by additional work if needed. 
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